Devin Monnens
Giant Tank – Commentary
7

Commentary

“Giant Tank is a game that depicts a battle between a soldier with a rifle and a tank. You are not the tank.”

Giant Tank uses the language of games – action and simulation – to produce an anti-war message. The character designs may be products of modern warfare, but they are not specific to a particular conflict or nationality. The tank is an abstraction of the brutal machine of war, the soldier a hopeless, frightened individual sent to the front to fight on the losing end of this battle of unequal force.

Giant Tank is at once both funny and disturbing. The simplicity of the graphics, particularly the mirroring of the soldier's animations, recalls the charm of early videogames. The simplicity of actions – the soldier can move and fire – and the limited space of movement add to this humor. However, the limited space also becomes claustrophobic – the size of the tank dwarfs that of the soldier, and its jagged darkness cuts through the clean white background of the game. This difference in size will become even more apparent when the game is projected onto a larger surface. Further, the prone soldier seems almost willing to be crushed by the tank, whose task has been made easier by this compromised position. The sinister shaking of the tank gives a sense of weight and malice as the harsh rumbling of the tank slowly grinds into the ears of the player.

What can we surmise about the characters? The soldier must feel some sense of hopelessness. His commander's words, meant to inspire (and similar to Japanese military propaganda) are simply hopeless. 'Destroy the tank' is implied. The explicit 'It will take many bullets to win!' is the only strategy we are given by the officer. As per game logic, we should expect that the game is actually winnable if we fire enough bullets at the tank. We aren't told exactly how many, but expect it must be 'a lot.' However, as we know from real-world experience, it does not matter how many bullets one has – it is simply impossible to destroy a tank with only a rifle. What should in fact be obvious becomes a puzzle – or twisted joke – due to standard game conventions.

At the same time, the tank is limited by its speed of movement and rotation. The tank can also not fire a shell at the soldier (primarily because the shell would simply fly over him, doing no damage). The inept AI (or horrible tank design) means that the soldier will only die if he makes a mistake or gives up. For this reason, does the tank crew feel frustrated, sadistic, or horrified with their task? We can only surmise how the characters think or feel. We only know that the soldier has no choice but to fight the tank and the tank has no choice but to fight the soldier. There are no alternatives, no opportunities to surrender or flee, and the outcome is tragically and horrifically clear.

Giant Tank's Commentary on Games

Giant Tank is an incredibly simplistic game. In fact, there are so few elements present that we might be pressed to say it is not really a game. Even the title and instructions screens appear to simply make the game overly complex.

In fact, simple games such as Tic Tac Toe or Combat are important subjects for study and analysis as they distill games to a core, cutting out all the distracting, 'extraneous' features like flashy graphics and narrative that many contemporary developers and players think are essential to games. Conversely, creating a simple game also makes it easier to test these preconceived notions of what games are and what they can do and to more easily examine their results.

One primary element which makes Giant Tank seem as if it is not a game is the fact that it cannot be won. Of course, many old arcade games never had an ending – merely an infinite supply of enemy waves or repeated levels. Though this situation has resulted in commentary with regards to the hopelessness and inhumanity of battles like Space Invaders, the fact that these games have an outcome quantified by points or time prevents us from questioning their nature as games.

Giant Tank, on the other hand, has no scoring system. If a scoring system had been added, then the player would simply seek to reach the highest score, measured perhaps in time survived or number of bullets fired. In fact, such a system of measurement would be very easy to implement. Removing the scoring system means the player's goal is more limited by the instructions and the implicit logic of games: destroy the enemies (in this case the giant tank) to win.

Despite what all game conventions tell us, this objective is impossible to achieve. Some might say this means it is not a game. The game has a quantifiable outcome (defeat), but the outcome is not variable (there is no possibility of victory). And yet by playing with these definitions of what a game is or is not and by what we expect a game to be, Giant Tanks succeeds not only in being a game but also in exploring the limits of what games can be.

We can even take other games like Shadow of the Colossus where it is impossible to achieve the implicit goal of reaching Mono through the vortex, Marathon Infinity where it is impossible to destroy the evil computer, and the fictional Snakes and Foxes from The Wheel of Time where it is impossible for the humans to escape the snakes and foxes. The fact that these games cannot be 'won' does not prevent them from being games, but they do allow us to question our common perceptions of what games are.

Lastly, it cannot be stressed enough that Giant Tank attempts to express its messages primarily through action and simulation, the unique and universal language of games, rather than the language of 'old' media – text (dialogue) and the moving image (cutscenes). While Giant Tank does utilize text on its instructions screen, this text not only contains instructions that describe how the game is played (a critical component of games) but also serves to reinforce the internal logic of the game, one man with a rifle against one giant tank. We do not need to be given the false instructions that 'it will take many bullets to win'; the chance of victory has already been suggested by the cultural context that games are winnable, a supposed given that is here usually dispelled within the first few seconds of play.

Inspiration

Giant Tank was built based on a tragic scenario where a man with a rifle must fight off a tank. Such scenes occur in several war movies, including Stalingrad, The Human Condition 2, Winter War, and Saving Private Ryan. Of these, Stalingrad is the most graphic and frightening.

Situations like this occur more frequently when one side is losing the war. They will occur whenever there is a situation of unequal force. To be in such a position is frightening as well as futile – it is another instance of the hopelessness and futility of war and its horrific consequences.

Note that one famous scenario involving a single man and a tank is the Japanese suicide attacks of World War II. Towards the end of the war, special anti-tank units were formed where, due to lack of anti-tank artillery, individual soldiers had to crawl on the ground in front of an advancing armored vehicle in hopes of placing explosive mines under the vehicle. If the soldier managed to reach the armored vehicle without getting killed (which was usually quite common), he would likely be killed by the explosion. These situations are displayed or referred to in The Human Condition 2, Black Rain, and Letters from Iwo Jima. The focus of this game is not on a suicide attacks but on an effort to unsuccessfully oppose unequal force while trying to survive, and so does not deal with these forms of suicide attacks.

Giant Tank's ludic inspirations include Combat for the Atari 2600 and Blood and Bullets, a game that was part of the Shoot 'em Up Construction Kit for the Amiga. The concept of an 'unwinnable game' can be found in Snakes and Foxes, a fictional game from The Wheel of Time fantasy series, Marathon Infinity, and Shadow of the Colossus. Other inspirations include Adventure for the Atari 2600 as well as September 12. Remembering the Gamestudies article, “I Lose, Therefore I Think” by Shuen-shing Lee
 has also been important to my design.

Technical Information

Visuals

The graphics for Giant Tank are inspired by classic Atari videogames such as Combat and Pitfall! Most of the graphics were initially drawn in Photoshop and then imported. While Scratch has its own graphical editor, it is in many ways insufficient. You cannot export graphics from Scratch, and the editor is about as sophisticated as MS Paint, though it lacks keyboard shortcuts. A slightly more complex internal editor and an export function would make this a much better program.

The tank itself is more or less a direct copy of the tank found in Combat. The tank is divided into two parts, a body and a turret. This decision was necessary to prevent the soldier from being crushed when he is only beneath the turret, rather than the body of the tank. Like the dragons in Adventure, there is still some slim hope of survival, even when you are within the shadow of death. Due to a clipping error with the turret, the size of the turret's based had to be made smaller for the final version. Its appearance seems to resemble a hammer.

The soldier's design was inspired by Pitfall Harry as well as the prone green army men toy soldiers. Without having any visual models present other than blurry screenshots, creating the proper outline became difficult. The arms were initially a separate color from the body to make it easier to draw, but were eventually changed to green. Due to the self-imposed small image size (the soldier is only 27x8 pixels tall, similar to Pitfall Harry's size) and limited number of colors (also reflecting the Atari's graphics), drawing a convincing prone soldier was extremely difficult. Fortunately, the context makes it much easier to tell what he is.

The large size of the tank physically dwarfs that of the soldier. The small size of the screen also means that the jagged black edges of the tank seem to rip out sections of the canvas as if attempting to completely obliterate the screen.

The bullet is a simple black square. The weapons: rifle, tank, and bullet, are all black, though the soldier's helmet and belt are black as well. Due to difficulties in making the bullet larger, its size had to be manually edited in the Scratch editor.

The background is completely white. This gives a stark contrast with the black tank, but is also reminiscent of the background in Combat.

The title graphic is a tracing of a found polygonal tank image. While not specifically a World War II-era tank, the tank image, like that of the Combat tank, are both generic rather than specific. This prevents Giant Tank from being limited to only a single historical period, though it does reflect modern mechanized warfare (World War II and post-World War II conflicts) moreso than the more rounded 'Devil's cockroaches' of World War I. The title graphic is actually partly inspired by the campy title screen for Blood and Bullets, a game with similarities to Commando that was part of Shoot 'Em Up Construction Kit for the Amiga. Incidentally, the tanks in Blood and Bullets cannot be destroyed either, as the commando is armed only with a machinegun.

The font used for the title, and some of the buttons is unique to Scratch. I chose the Typewriter font for its gritty appearance.

The Instructions screen was designed in Photoshop and imported. It uses a classic arcade font to inspire the feel of old videogames. The 'general' helmets are generic images of command and are an extremely flattened version of the helmets used in Commandopede.

I am only dissatisfied that the graphical appearance of the title, instructions, and button text differs from the in-game graphics, which strictly follow Atari-style graphics. To some extent, this game could probably be programmed as an Atari cartridge, though it would require a severe overhaul of the title screen graphics, and likely also a complete removal of the instructions screen.

On The Tank's 'Shaking'

As the tank moves about in Scratch, it will shake back and forth as it moves forward at an angle. As the tank shakes, the soldier does as well, giving the impression of mass and rumblings produced by the large war machine. The shaking of the tank also makes it look more sinister, particularly when it is driving over the soldier, as if it is purposefully grinding away.

This 'shaking' results from the nature of Scratch's code. Both the tank and the soldier will point to each other, and when the soldier and tank are not properly aligned, they will move back and forth to attempt to be on the same angle. As the tank is constantly moving, if the angle difference is uneven, then the tank will shake back and forth, attempting to properly align itself.

This unintended consequence of the code thankfully produced one of the more memorable features of Giant Tank.

The Audio

The audio is altered samples taken from an open-source audio website. They are 8-bit sound effects that were altered in an audio editor. Both are produced using a static channel, and are short bursts of white noise played back at varying frequencies. The noise channel was used in old computers primarily for sound effects and percussion instruments due to its short range. Thus, drum sfx, explosions, and engine noises in old videogames were often produced by the noise channel.

The tank's rumbling is a short rumbling burst of static that is played over and over again each time the tank moves. Unfortunately, the tank rumbling will play for a short period after the Game Over screen appears due to the coding. To fix this would require an additional section of code that did not seem worth it at the time.

The gunshot is almost the same as one of the 8-bit sound effects I downloaded, but with a change in pitch.

The Code

Most of the code has been documented in a separate text file. Original sections of code tended to be designed with a particular solution to a design problem in mind, a problem that I later discovered could be solved in a simpler, more direct fashion. This problem has been even more rampant in the design of Commandopede in Stagecast. As a result, redundant sections of code ended up being included in later versions of the game until I finally went through and cut out this code. It didn't help that Scratch's inability to document code directly into the program made figuring out what each piece of code does incredibly difficult.

For instance, the tank could originally fire a canon shell, but this was soon cut from the game for design reasons. Yet, the code and graphics for the tank remained long after this decision was made. When I went to remove some of the code, I ended up accidentally removing a critical piece of code. Had this been a much larger and more complex program, fixing this problem would have been much more complex.

Choosing a Design Platform: Praise and Criticism for Scratch

Scratch is a development tool produced by MIT to teach children how to make videogames and other interactive software. As such, it is incredibly easy to use, allowing new designers to create something interactive in a matter of minutes, something impossible with tools like Flash and Torque.

Scratch is very similar to Stagecast Creator, another piece of software I have been using for development, so it is important to make comparisons between the two, which will be outlined in further detail below.

What makes Scratch so easy to learn is its unique visual interface. As opposed to entering code into an empty text box, users drag discrete building blocks representing code onto a workspace. This produces a workflow that tells objects what to do and how users can interact with them. When a section of code 'fires off', it is highlighted on the workspace, providing greater feedback as to what is happening. Building a program with Scratch is thus more akin to working with Legos or Tinkertoys than to programming – the connection between causes and effects is much more clear and the hands-on, visual metaphor is much more intuitive than other software.

Because the code is composed of discrete building blocks interfacing with variables, designers do not have to worry about whether or not they typed the code correctly. In more traditional programming languages, a simple misprint in the code can result in incorrect syntax and the program's failure to run. Debugging such code thus requires a considerable knowledge of what each line of code does as well as a different non-direct visual paradigm of what the code actually looks like. In Scratch, the building blocks of code in fact create a visual flowchart where the effects of the code and when they activate can be easily observed in the program and the workspace.

Scratch also comes with an image editor and several sample programs for designers to open and analyze. The online community contains a larger collection of programs that are all open-source, meaning anyone can examine the code content of any program.

Unfortunately, Scratch has severe limitations. One of the more dramatic and frustrating limitations is its lack of object instancing support. Scratch can only create single instances of an object; you cannot simply enter a line of code that makes multiple instances of an object appear from an object class. Instead, you have to manually build each instance of the object. While Scratch has a stamp tool, if you need to change some feature or function of the whole set of identically stamped objects, you have to manually alter each and every one. This means if you want to create a Space Invaders clone, you have to create each and every alien individually, an incredibly time-consuming task the more aliens are present. This lack of classes implementation is a severe handicap and is akin to having to build with your nice Lego with one hand tied behind the back.

Scratch also cannot change the display area. Stage sizes are limited to 480x360 pixels and cannot be enlarged or shrunken. This means programs are limited to single-screen operations, though some designers have managed to fake the appearance of a larger screen by creating large sprites that scroll past as the player moves.

You also cannot document your code within Scratch. Documenting code is incredibly important to programming as it allows you to communicate to others what a particular section of code does. As Scratch lacks this documentation, the only way to communicate what your code does is to attach a separate file containing notes on the code, a file that can easily be separated from the source program.

Scratch's workspace also becomes easily cluttered. Blocks of code are dragged on to the workspace and then dragged around to attach to other pieces of code. When a large section of code is dropped where it obscures another section of code, these blocks and strings of code must be manually organized. There is no button that will automatically organize the code by pressing a button to move the pieces around until they are no longer obscuring other pieces of code. Imagine if you had to manually move your icons around on your computer desktop and folders instead of being able to merely select an 'arrange all icons' function and you will have a good idea as to how this is done in Scratch.

It is also impossible to export images created in the Scratch editor. This means if a piece of art is created or edited within Scratch and the artist later wishes to edit it in a separate program or save it to share with other people, he or she cannot do so.

I chose Scratch as a platform on which to build Giant Tank as it was simple and easy to use, allowing me to express myself through interactive media. Within a few hours I was able to accomplish more than I had struggling with Flash over the course of a month. Such an experience was empowering, even though Scratch is such a limited piece of software. I would like to see MIT continue to refine the design they created with Scratch to make it more powerful, flexible, and appealing to a wider range of audiences without losing its ease of use and charm.

Even so, Giant Tank reinforces the idea that thought provoking game art can indeed be created with even so simple a piece of software as Scratch. To see such software emerge from what is designed as a child's work tool will hopefully be inspiring to others that designers should overcome their prejudices against certain platforms and mediums rather than seeing them as a limitation to imagination.

�	 Shuen-shing Lee. “"I Lose, Therefore I Think": A Search for Contemplation amid Wars of Push-Button Glare." in Game Studies, Volume 3, issue 2. URI: � HYPERLINK "http://www.gamestudies.org/0302/lee/"��http://www.gamestudies.org/0302/lee/�

